|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  | /** * @fileoverview A class to manage state of generating a code path. * @author Toru Nagashima */
"use strict";
//------------------------------------------------------------------------------
// Requirements
//------------------------------------------------------------------------------
const CodePathSegment = require("./code-path-segment"),    ForkContext = require("./fork-context");
//-----------------------------------------------------------------------------
// Contexts
//-----------------------------------------------------------------------------
/** * Represents the context in which a `break` statement can be used. * * A `break` statement without a label is only valid in a few places in * JavaScript: any type of loop or a `switch` statement. Otherwise, `break` * without a label causes a syntax error. For these contexts, `breakable` is * set to `true` to indicate that a `break` without a label is valid. * * However, a `break` statement with a label is also valid inside of a labeled * statement. For example, this is valid: * *     a : { *         break a; *     } * * The `breakable` property is set false for labeled statements to indicate * that `break` without a label is invalid. */class BreakContext {
    /**     * Creates a new instance.     * @param {BreakContext} upperContext The previous `BreakContext`.     * @param {boolean} breakable Indicates if we are inside a statement where     *      `break` without a label will exit the statement.     * @param {string|null} label The label for the statement.     * @param {ForkContext} forkContext The current fork context.     */    constructor(upperContext, breakable, label, forkContext) {
        /**         * The previous `BreakContext`         * @type {BreakContext}         */        this.upper = upperContext;
        /**         * Indicates if we are inside a statement where `break` without a label         * will exit the statement.         * @type {boolean}         */        this.breakable = breakable;
        /**         * The label associated with the statement.         * @type {string|null}         */        this.label = label;
        /**         * The fork context for the `break`.         * @type {ForkContext}         */        this.brokenForkContext = ForkContext.newEmpty(forkContext);    }}
/** * Represents the context for `ChainExpression` nodes. */class ChainContext {
    /**     * Creates a new instance.     * @param {ChainContext} upperContext The previous `ChainContext`.     */    constructor(upperContext) {
        /**         * The previous `ChainContext`         * @type {ChainContext}         */        this.upper = upperContext;
        /**         * The number of choice contexts inside of the `ChainContext`.         * @type {number}         */        this.choiceContextCount = 0;
    }}
/** * Represents a choice in the code path. * * Choices are created by logical operators such as `&&`, loops, conditionals, * and `if` statements. This is the point at which the code path has a choice of * which direction to go. * * The result of a choice might be in the left (test) expression of another choice, * and in that case, may create a new fork. For example, `a || b` is a choice * but does not create a new fork because the result of the expression is * not used as the test expression in another expression. In this case, * `isForkingAsResult` is false. In the expression `a || b || c`, the `a || b` * expression appears as the test expression for `|| c`, so the * result of `a || b` creates a fork because execution may or may not * continue to `|| c`. `isForkingAsResult` for `a || b` in this case is true * while `isForkingAsResult` for `|| c` is false. (`isForkingAsResult` is always * false for `if` statements, conditional expressions, and loops.) * * All of the choices except one (`??`) operate on a true/false fork, meaning if * true go one way and if false go the other (tracked by `trueForkContext` and * `falseForkContext`). The `??` operator doesn't operate on true/false because * the left expression is evaluated to be nullish or not, so only if nullish do * we fork to the right expression (tracked by `nullishForkContext`). */class ChoiceContext {
    /**     * Creates a new instance.     * @param {ChoiceContext} upperContext The previous `ChoiceContext`.     * @param {string} kind The kind of choice. If it's a logical or assignment expression, this     *      is `"&&"` or `"||"` or `"??"`; if it's an `if` statement or     *      conditional expression, this is `"test"`; otherwise, this is `"loop"`.     * @param {boolean} isForkingAsResult Indicates if the result of the choice     *      creates a fork.     * @param {ForkContext} forkContext The containing `ForkContext`.     */    constructor(upperContext, kind, isForkingAsResult, forkContext) {
        /**         * The previous `ChoiceContext`         * @type {ChoiceContext}         */        this.upper = upperContext;
        /**         * The kind of choice. If it's a logical or assignment expression, this         * is `"&&"` or `"||"` or `"??"`; if it's an `if` statement or         * conditional expression, this is `"test"`; otherwise, this is `"loop"`.         * @type {string}         */        this.kind = kind;
        /**         * Indicates if the result of the choice forks the code path.         * @type {boolean}         */        this.isForkingAsResult = isForkingAsResult;
        /**         * The fork context for the `true` path of the choice.         * @type {ForkContext}         */        this.trueForkContext = ForkContext.newEmpty(forkContext);
        /**         * The fork context for the `false` path of the choice.         * @type {ForkContext}         */        this.falseForkContext = ForkContext.newEmpty(forkContext);
        /**         * The fork context for when the choice result is `null` or `undefined`.         * @type {ForkContext}         */        this.nullishForkContext = ForkContext.newEmpty(forkContext);
        /**         * Indicates if any of `trueForkContext`, `falseForkContext`, or         * `nullishForkContext` have been updated with segments from a child context.         * @type {boolean}         */        this.processed = false;    }
}
/** * Base class for all loop contexts. */class LoopContextBase {
    /**     * Creates a new instance.     * @param {LoopContext|null} upperContext The previous `LoopContext`.     * @param {string} type The AST node's `type` for the loop.     * @param {string|null} label The label for the loop from an enclosing `LabeledStatement`.     * @param {BreakContext} breakContext The context for breaking the loop.     */    constructor(upperContext, type, label, breakContext) {
        /**         * The previous `LoopContext`.         * @type {LoopContext}         */        this.upper = upperContext;
        /**         * The AST node's `type` for the loop.         * @type {string}         */        this.type = type;
        /**         * The label for the loop from an enclosing `LabeledStatement`.         * @type {string|null}         */        this.label = label;
        /**         * The fork context for when `break` is encountered.         * @type {ForkContext}         */        this.brokenForkContext = breakContext.brokenForkContext;    }}
/** * Represents the context for a `while` loop. */class WhileLoopContext extends LoopContextBase {
    /**     * Creates a new instance.     * @param {LoopContext|null} upperContext The previous `LoopContext`.     * @param {string|null} label The label for the loop from an enclosing `LabeledStatement`.     * @param {BreakContext} breakContext The context for breaking the loop.     */    constructor(upperContext, label, breakContext) {        super(upperContext, "WhileStatement", label, breakContext);
        /**         * The hardcoded literal boolean test condition for         * the loop. Used to catch infinite or skipped loops.         * @type {boolean|undefined}         */        this.test = void 0;
        /**         * The segments representing the test condition where `continue` will         * jump to. The test condition will typically have just one segment but         * it's possible for there to be more than one.         * @type {Array<CodePathSegment>|null}         */        this.continueDestSegments = null;    }}
/** * Represents the context for a `do-while` loop. */class DoWhileLoopContext extends LoopContextBase {
    /**     * Creates a new instance.     * @param {LoopContext|null} upperContext The previous `LoopContext`.     * @param {string|null} label The label for the loop from an enclosing `LabeledStatement`.     * @param {BreakContext} breakContext The context for breaking the loop.     * @param {ForkContext} forkContext The enclosing fork context.     */    constructor(upperContext, label, breakContext, forkContext) {        super(upperContext, "DoWhileStatement", label, breakContext);
        /**         * The hardcoded literal boolean test condition for         * the loop. Used to catch infinite or skipped loops.         * @type {boolean|undefined}         */        this.test = void 0;
        /**         * The segments at the start of the loop body. This is the only loop         * where the test comes at the end, so the first iteration always         * happens and we need a reference to the first statements.         * @type {Array<CodePathSegment>|null}         */        this.entrySegments = null;
        /**         * The fork context to follow when a `continue` is found.         * @type {ForkContext}         */        this.continueForkContext = ForkContext.newEmpty(forkContext);    }}
/** * Represents the context for a `for` loop. */class ForLoopContext extends LoopContextBase {
    /**     * Creates a new instance.     * @param {LoopContext|null} upperContext The previous `LoopContext`.     * @param {string|null} label The label for the loop from an enclosing `LabeledStatement`.     * @param {BreakContext} breakContext The context for breaking the loop.     */    constructor(upperContext, label, breakContext) {        super(upperContext, "ForStatement", label, breakContext);
        /**         * The hardcoded literal boolean test condition for         * the loop. Used to catch infinite or skipped loops.         * @type {boolean|undefined}         */        this.test = void 0;
        /**         * The end of the init expression. This may change during the lifetime         * of the instance as we traverse the loop because some loops don't have         * an init expression.         * @type {Array<CodePathSegment>|null}         */        this.endOfInitSegments = null;
        /**         * The start of the test expression. This may change during the lifetime         * of the instance as we traverse the loop because some loops don't have         * a test expression.         * @type {Array<CodePathSegment>|null}         */        this.testSegments = null;
        /**         * The end of the test expression. This may change during the lifetime         * of the instance as we traverse the loop because some loops don't have         * a test expression.         * @type {Array<CodePathSegment>|null}         */        this.endOfTestSegments = null;
        /**         * The start of the update expression. This may change during the lifetime         * of the instance as we traverse the loop because some loops don't have         * an update expression.         * @type {Array<CodePathSegment>|null}         */        this.updateSegments = null;
        /**         * The end of the update expresion. This may change during the lifetime         * of the instance as we traverse the loop because some loops don't have         * an update expression.         * @type {Array<CodePathSegment>|null}         */        this.endOfUpdateSegments = null;
        /**         * The segments representing the test condition where `continue` will         * jump to. The test condition will typically have just one segment but         * it's possible for there to be more than one. This may change during the         * lifetime of the instance as we traverse the loop because some loops         * don't have an update expression. When there is an update expression, this         * will end up pointing to that expression; otherwise it will end up pointing         * to the test expression.         * @type {Array<CodePathSegment>|null}         */        this.continueDestSegments = null;    }}
/** * Represents the context for a `for-in` loop. * * Terminology: * - "left" means the part of the loop to the left of the `in` keyword. For *   example, in `for (var x in y)`, the left is `var x`. * - "right" means the part of the loop to the right of the `in` keyword. For *   example, in `for (var x in y)`, the right is `y`. */class ForInLoopContext extends LoopContextBase {
    /**     * Creates a new instance.     * @param {LoopContext|null} upperContext The previous `LoopContext`.     * @param {string|null} label The label for the loop from an enclosing `LabeledStatement`.     * @param {BreakContext} breakContext The context for breaking the loop.     */    constructor(upperContext, label, breakContext) {        super(upperContext, "ForInStatement", label, breakContext);
        /**         * The segments that came immediately before the start of the loop.         * This allows you to traverse backwards out of the loop into the         * surrounding code. This is necessary to evaluate the right expression         * correctly, as it must be evaluated in the same way as the left         * expression, but the pointer to these segments would otherwise be         * lost if not stored on the instance. Once the right expression has         * been evaluated, this property is no longer used.         * @type {Array<CodePathSegment>|null}         */        this.prevSegments = null;
        /**         * Segments representing the start of everything to the left of the         * `in` keyword. This can be used to move forward towards         * `endOfLeftSegments`. `leftSegments` and `endOfLeftSegments` are         * effectively the head and tail of a doubly-linked list.         * @type {Array<CodePathSegment>|null}         */        this.leftSegments = null;
        /**         * Segments representing the end of everything to the left of the         * `in` keyword. This can be used to move backward towards `leftSegments`.         * `leftSegments` and `endOfLeftSegments` are effectively the head         * and tail of a doubly-linked list.         * @type {Array<CodePathSegment>|null}         */        this.endOfLeftSegments = null;
        /**         * The segments representing the left expression where `continue` will         * jump to. In `for-in` loops, `continue` must always re-execute the         * left expression each time through the loop. This contains the same         * segments as `leftSegments`, but is duplicated here so each loop         * context has the same property pointing to where `continue` should         * end up.         * @type {Array<CodePathSegment>|null}         */        this.continueDestSegments = null;    }}
/** * Represents the context for a `for-of` loop. */class ForOfLoopContext extends LoopContextBase {
    /**     * Creates a new instance.     * @param {LoopContext|null} upperContext The previous `LoopContext`.     * @param {string|null} label The label for the loop from an enclosing `LabeledStatement`.     * @param {BreakContext} breakContext The context for breaking the loop.     */    constructor(upperContext, label, breakContext) {        super(upperContext, "ForOfStatement", label, breakContext);
        /**         * The segments that came immediately before the start of the loop.         * This allows you to traverse backwards out of the loop into the         * surrounding code. This is necessary to evaluate the right expression         * correctly, as it must be evaluated in the same way as the left         * expression, but the pointer to these segments would otherwise be         * lost if not stored on the instance. Once the right expression has         * been evaluated, this property is no longer used.         * @type {Array<CodePathSegment>|null}         */        this.prevSegments = null;
        /**         * Segments representing the start of everything to the left of the         * `of` keyword. This can be used to move forward towards         * `endOfLeftSegments`. `leftSegments` and `endOfLeftSegments` are         * effectively the head and tail of a doubly-linked list.         * @type {Array<CodePathSegment>|null}         */        this.leftSegments = null;
        /**         * Segments representing the end of everything to the left of the         * `of` keyword. This can be used to move backward towards `leftSegments`.         * `leftSegments` and `endOfLeftSegments` are effectively the head         * and tail of a doubly-linked list.         * @type {Array<CodePathSegment>|null}         */        this.endOfLeftSegments = null;
        /**         * The segments representing the left expression where `continue` will         * jump to. In `for-in` loops, `continue` must always re-execute the         * left expression each time through the loop. This contains the same         * segments as `leftSegments`, but is duplicated here so each loop         * context has the same property pointing to where `continue` should         * end up.         * @type {Array<CodePathSegment>|null}         */        this.continueDestSegments = null;    }}
/** * Represents the context for any loop. * @typedef {WhileLoopContext|DoWhileLoopContext|ForLoopContext|ForInLoopContext|ForOfLoopContext} LoopContext */
/** * Represents the context for a `switch` statement. */class SwitchContext {
    /**     * Creates a new instance.     * @param {SwitchContext} upperContext The previous context.     * @param {boolean} hasCase Indicates if there is at least one `case` statement.     *      `default` doesn't count.     */    constructor(upperContext, hasCase) {
        /**         * The previous context.         * @type {SwitchContext}         */        this.upper = upperContext;
        /**         * Indicates if there is at least one `case` statement. `default` doesn't count.         * @type {boolean}         */        this.hasCase = hasCase;
        /**         * The `default` keyword.         * @type {Array<CodePathSegment>|null}         */        this.defaultSegments = null;
        /**         * The default case body starting segments.         * @type {Array<CodePathSegment>|null}         */        this.defaultBodySegments = null;
        /**         * Indicates if a `default` case and is empty exists.         * @type {boolean}         */        this.foundEmptyDefault = false;
        /**         * Indicates that a `default` exists and is the last case.         * @type {boolean}         */        this.lastIsDefault = false;
        /**         * The number of fork contexts created. This is equivalent to the         * number of `case` statements plus a `default` statement (if present).         * @type {number}         */        this.forkCount = 0;    }}
/** * Represents the context for a `try` statement. */class TryContext {
    /**     * Creates a new instance.     * @param {TryContext} upperContext The previous context.     * @param {boolean} hasFinalizer Indicates if the `try` statement has a     *      `finally` block.     * @param {ForkContext} forkContext The enclosing fork context.     */    constructor(upperContext, hasFinalizer, forkContext) {
        /**         * The previous context.         * @type {TryContext}         */        this.upper = upperContext;
        /**         * Indicates if the `try` statement has a `finally` block.         * @type {boolean}         */        this.hasFinalizer = hasFinalizer;
        /**         * Tracks the traversal position inside of the `try` statement. This is         * used to help determine the context necessary to create paths because         * a `try` statement may or may not have `catch` or `finally` blocks,         * and code paths behave differently in those blocks.         * @type {"try"|"catch"|"finally"}         */        this.position = "try";
        /**         * If the `try` statement has a `finally` block, this affects how a         * `return` statement behaves in the `try` block. Without `finally`,         * `return` behaves as usual and doesn't require a fork; with `finally`,         * `return` forks into the `finally` block, so we need a fork context         * to track it.         * @type {ForkContext|null}         */        this.returnedForkContext = hasFinalizer            ? ForkContext.newEmpty(forkContext)            : null;
        /**         * When a `throw` occurs inside of a `try` block, the code path forks         * into the `catch` or `finally` blocks, and this fork context tracks         * that path.         * @type {ForkContext}         */        this.thrownForkContext = ForkContext.newEmpty(forkContext);
        /**         * Indicates if the last segment in the `try` block is reachable.         * @type {boolean}         */        this.lastOfTryIsReachable = false;
        /**         * Indicates if the last segment in the `catch` block is reachable.         * @type {boolean}         */        this.lastOfCatchIsReachable = false;    }}
//------------------------------------------------------------------------------
// Helpers
//------------------------------------------------------------------------------
/** * Adds given segments into the `dest` array. * If the `others` array does not include the given segments, adds to the `all` * array as well. * * This adds only reachable and used segments. * @param {CodePathSegment[]} dest A destination array (`returnedSegments` or `thrownSegments`). * @param {CodePathSegment[]} others Another destination array (`returnedSegments` or `thrownSegments`). * @param {CodePathSegment[]} all The unified destination array (`finalSegments`). * @param {CodePathSegment[]} segments Segments to add. * @returns {void} */function addToReturnedOrThrown(dest, others, all, segments) {    for (let i = 0; i < segments.length; ++i) {        const segment = segments[i];
        dest.push(segment);        if (!others.includes(segment)) {            all.push(segment);        }    }}
/** * Gets a loop context for a `continue` statement based on a given label. * @param {CodePathState} state The state to search within. * @param {string|null} label The label of a `continue` statement. * @returns {LoopContext} A loop-context for a `continue` statement. */function getContinueContext(state, label) {    if (!label) {        return state.loopContext;    }
    let context = state.loopContext;
    while (context) {        if (context.label === label) {            return context;        }        context = context.upper;    }
    /* c8 ignore next */    return null;}
/** * Gets a context for a `break` statement. * @param {CodePathState} state The state to search within. * @param {string|null} label The label of a `break` statement. * @returns {BreakContext} A context for a `break` statement. */function getBreakContext(state, label) {    let context = state.breakContext;
    while (context) {        if (label ? context.label === label : context.breakable) {            return context;        }        context = context.upper;    }
    /* c8 ignore next */    return null;}
/** * Gets a context for a `return` statement. There is just one special case: * if there is a `try` statement with a `finally` block, because that alters * how `return` behaves; otherwise, this just passes through the given state. * @param {CodePathState} state The state to search within * @returns {TryContext|CodePathState} A context for a `return` statement. */function getReturnContext(state) {    let context = state.tryContext;
    while (context) {        if (context.hasFinalizer && context.position !== "finally") {            return context;        }        context = context.upper;    }
    return state;}
/** * Gets a context for a `throw` statement. There is just one special case: * if there is a `try` statement with a `finally` block and we are inside of * a `catch` because that changes how `throw` behaves; otherwise, this just * passes through the given state. * @param {CodePathState} state The state to search within. * @returns {TryContext|CodePathState} A context for a `throw` statement. */function getThrowContext(state) {    let context = state.tryContext;
    while (context) {        if (context.position === "try" ||            (context.hasFinalizer && context.position === "catch")        ) {            return context;        }        context = context.upper;    }
    return state;}
/** * Removes a given value from a given array. * @param {any[]} elements An array to remove the specific element. * @param {any} value The value to be removed. * @returns {void} */function removeFromArray(elements, value) {    elements.splice(elements.indexOf(value), 1);}
/** * Disconnect given segments. * * This is used in a process for switch statements. * If there is the "default" chunk before other cases, the order is different * between node's and running's. * @param {CodePathSegment[]} prevSegments Forward segments to disconnect. * @param {CodePathSegment[]} nextSegments Backward segments to disconnect. * @returns {void} */function disconnectSegments(prevSegments, nextSegments) {    for (let i = 0; i < prevSegments.length; ++i) {        const prevSegment = prevSegments[i];        const nextSegment = nextSegments[i];
        removeFromArray(prevSegment.nextSegments, nextSegment);        removeFromArray(prevSegment.allNextSegments, nextSegment);        removeFromArray(nextSegment.prevSegments, prevSegment);        removeFromArray(nextSegment.allPrevSegments, prevSegment);    }}
/** * Creates looping path between two arrays of segments, ensuring that there are * paths going between matching segments in the arrays. * @param {CodePathState} state The state to operate on. * @param {CodePathSegment[]} unflattenedFromSegments Segments which are source. * @param {CodePathSegment[]} unflattenedToSegments Segments which are destination. * @returns {void} */function makeLooped(state, unflattenedFromSegments, unflattenedToSegments) {
    const fromSegments = CodePathSegment.flattenUnusedSegments(unflattenedFromSegments);    const toSegments = CodePathSegment.flattenUnusedSegments(unflattenedToSegments);    const end = Math.min(fromSegments.length, toSegments.length);
    /*     * This loop effectively updates a doubly-linked list between two collections     * of segments making sure that segments in the same array indices are     * combined to create a path.     */    for (let i = 0; i < end; ++i) {
        // get the segments in matching array indices
        const fromSegment = fromSegments[i];        const toSegment = toSegments[i];
        /*         * If the destination segment is reachable, then create a path from the         * source segment to the destination segment.         */        if (toSegment.reachable) {            fromSegment.nextSegments.push(toSegment);        }
        /*         * If the source segment is reachable, then create a path from the         * destination segment back to the source segment.         */        if (fromSegment.reachable) {            toSegment.prevSegments.push(fromSegment);        }
        /*         * Also update the arrays that don't care if the segments are reachable         * or not. This should always happen regardless of anything else.         */        fromSegment.allNextSegments.push(toSegment);        toSegment.allPrevSegments.push(fromSegment);
        /*         * If the destination segment has at least two previous segments in its         * path then that means there was one previous segment before this iteration         * of the loop was executed. So, we need to mark the source segment as         * looped.         */        if (toSegment.allPrevSegments.length >= 2) {            CodePathSegment.markPrevSegmentAsLooped(toSegment, fromSegment);        }
        // let the code path analyzer know that there's been a loop created
        state.notifyLooped(fromSegment, toSegment);    }}
/** * Finalizes segments of `test` chunk of a ForStatement. * * - Adds `false` paths to paths which are leaving from the loop. * - Sets `true` paths to paths which go to the body. * @param {LoopContext} context A loop context to modify. * @param {ChoiceContext} choiceContext A choice context of this loop. * @param {CodePathSegment[]} head The current head paths. * @returns {void} */function finalizeTestSegmentsOfFor(context, choiceContext, head) {
    /*     * If this choice context doesn't already contain paths from a     * child context, then add the current head to each potential path.     */    if (!choiceContext.processed) {        choiceContext.trueForkContext.add(head);        choiceContext.falseForkContext.add(head);        choiceContext.nullishForkContext.add(head);    }
    /*     * If the test condition isn't a hardcoded truthy value, then `break`     * must follow the same path as if the test condition is false. To represent     * that, we append the path for when the loop test is false (represented by     * `falseForkContext`) to the `brokenForkContext`.     */    if (context.test !== true) {        context.brokenForkContext.addAll(choiceContext.falseForkContext);    }
    context.endOfTestSegments = choiceContext.trueForkContext.makeNext(0, -1);}
//------------------------------------------------------------------------------
// Public Interface
//------------------------------------------------------------------------------
/** * A class which manages state to analyze code paths. */class CodePathState {
    /**     * Creates a new instance.     * @param {IdGenerator} idGenerator An id generator to generate id for code     *   path segments.     * @param {Function} onLooped A callback function to notify looping.     */    constructor(idGenerator, onLooped) {
        /**         * The ID generator to use when creating new segments.         * @type {IdGenerator}         */        this.idGenerator = idGenerator;
        /**         * A callback function to call when there is a loop.         * @type {Function}         */        this.notifyLooped = onLooped;
        /**         * The root fork context for this state.         * @type {ForkContext}         */        this.forkContext = ForkContext.newRoot(idGenerator);
        /**         * Context for logical expressions, conditional expressions, `if` statements,         * and loops.         * @type {ChoiceContext}         */        this.choiceContext = null;
        /**         * Context for `switch` statements.         * @type {SwitchContext}         */        this.switchContext = null;
        /**         * Context for `try` statements.         * @type {TryContext}         */        this.tryContext = null;
        /**         * Context for loop statements.         * @type {LoopContext}         */        this.loopContext = null;
        /**         * Context for `break` statements.         * @type {BreakContext}         */        this.breakContext = null;
        /**         * Context for `ChainExpression` nodes.         * @type {ChainContext}         */        this.chainContext = null;
        /**         * An array that tracks the current segments in the state. The array         * starts empty and segments are added with each `onCodePathSegmentStart`         * event and removed with each `onCodePathSegmentEnd` event. Effectively,         * this is tracking the code path segment traversal as the state is         * modified.         * @type {Array<CodePathSegment>}         */        this.currentSegments = [];
        /**         * Tracks the starting segment for this path. This value never changes.         * @type {CodePathSegment}         */        this.initialSegment = this.forkContext.head[0];
        /**         * The final segments of the code path which are either `return` or `throw`.         * This is a union of the segments in `returnedForkContext` and `thrownForkContext`.         * @type {Array<CodePathSegment>}         */        this.finalSegments = [];
        /**         * The final segments of the code path which are `return`. These         * segments are also contained in `finalSegments`.         * @type {Array<CodePathSegment>}         */        this.returnedForkContext = [];
        /**         * The final segments of the code path which are `throw`. These         * segments are also contained in `finalSegments`.         * @type {Array<CodePathSegment>}         */        this.thrownForkContext = [];
        /*         * We add an `add` method so that these look more like fork contexts and         * can be used interchangeably when a fork context is needed to add more         * segments to a path.         *         * Ultimately, we want anything added to `returned` or `thrown` to also         * be added to `final`. We only add reachable and used segments to these         * arrays.         */        const final = this.finalSegments;        const returned = this.returnedForkContext;        const thrown = this.thrownForkContext;
        returned.add = addToReturnedOrThrown.bind(null, returned, thrown, final);        thrown.add = addToReturnedOrThrown.bind(null, thrown, returned, final);    }
    /**     * A passthrough property exposing the current pointer as part of the API.     * @type {CodePathSegment[]}     */    get headSegments() {        return this.forkContext.head;    }
    /**     * The parent forking context.     * This is used for the root of new forks.     * @type {ForkContext}     */    get parentForkContext() {        const current = this.forkContext;
        return current && current.upper;    }
    /**     * Creates and stacks new forking context.     * @param {boolean} forkLeavingPath A flag which shows being in a     *   "finally" block.     * @returns {ForkContext} The created context.     */    pushForkContext(forkLeavingPath) {        this.forkContext = ForkContext.newEmpty(            this.forkContext,            forkLeavingPath        );
        return this.forkContext;    }
    /**     * Pops and merges the last forking context.     * @returns {ForkContext} The last context.     */    popForkContext() {        const lastContext = this.forkContext;
        this.forkContext = lastContext.upper;        this.forkContext.replaceHead(lastContext.makeNext(0, -1));
        return lastContext;    }
    /**     * Creates a new path.     * @returns {void}     */    forkPath() {        this.forkContext.add(this.parentForkContext.makeNext(-1, -1));    }
    /**     * Creates a bypass path.     * This is used for such as IfStatement which does not have "else" chunk.     * @returns {void}     */    forkBypassPath() {        this.forkContext.add(this.parentForkContext.head);    }
    //--------------------------------------------------------------------------
    // ConditionalExpression, LogicalExpression, IfStatement
    //--------------------------------------------------------------------------
    /**     * Creates a context for ConditionalExpression, LogicalExpression, AssignmentExpression (logical assignments only),     * IfStatement, WhileStatement, DoWhileStatement, or ForStatement.     *     * LogicalExpressions have cases that it goes different paths between the     * `true` case and the `false` case.     *     * For Example:     *     *     if (a || b) {     *         foo();     *     } else {     *         bar();     *     }     *     * In this case, `b` is evaluated always in the code path of the `else`     * block, but it's not so in the code path of the `if` block.     * So there are 3 paths.     *     *     a -> foo();     *     a -> b -> foo();     *     a -> b -> bar();     * @param {string} kind A kind string.     *   If the new context is LogicalExpression's or AssignmentExpression's, this is `"&&"` or `"||"` or `"??"`.     *   If it's IfStatement's or ConditionalExpression's, this is `"test"`.     *   Otherwise, this is `"loop"`.     * @param {boolean} isForkingAsResult Indicates if the result of the choice     *      creates a fork.     * @returns {void}     */    pushChoiceContext(kind, isForkingAsResult) {        this.choiceContext = new ChoiceContext(this.choiceContext, kind, isForkingAsResult, this.forkContext);    }
    /**     * Pops the last choice context and finalizes it.     * This is called upon leaving a node that represents a choice.     * @throws {Error} (Unreachable.)     * @returns {ChoiceContext} The popped context.     */    popChoiceContext() {        const poppedChoiceContext = this.choiceContext;        const forkContext = this.forkContext;        const head = forkContext.head;
        this.choiceContext = poppedChoiceContext.upper;
        switch (poppedChoiceContext.kind) {            case "&&":            case "||":            case "??":
                /*                 * The `head` are the path of the right-hand operand.                 * If we haven't previously added segments from child contexts,                 * then we add these segments to all possible forks.                 */                if (!poppedChoiceContext.processed) {                    poppedChoiceContext.trueForkContext.add(head);                    poppedChoiceContext.falseForkContext.add(head);                    poppedChoiceContext.nullishForkContext.add(head);                }
                /*                 * If this context is the left (test) expression for another choice                 * context, such as `a || b` in the expression `a || b || c`,                 * then we take the segments for this context and move them up                 * to the parent context.                 */                if (poppedChoiceContext.isForkingAsResult) {                    const parentContext = this.choiceContext;
                    parentContext.trueForkContext.addAll(poppedChoiceContext.trueForkContext);                    parentContext.falseForkContext.addAll(poppedChoiceContext.falseForkContext);                    parentContext.nullishForkContext.addAll(poppedChoiceContext.nullishForkContext);                    parentContext.processed = true;
                    // Exit early so we don't collapse all paths into one.
                    return poppedChoiceContext;                }
                break;
            case "test":                if (!poppedChoiceContext.processed) {
                    /*                     * The head segments are the path of the `if` block here.                     * Updates the `true` path with the end of the `if` block.                     */                    poppedChoiceContext.trueForkContext.clear();                    poppedChoiceContext.trueForkContext.add(head);                } else {
                    /*                     * The head segments are the path of the `else` block here.                     * Updates the `false` path with the end of the `else`                     * block.                     */                    poppedChoiceContext.falseForkContext.clear();                    poppedChoiceContext.falseForkContext.add(head);                }
                break;
            case "loop":
                /*                 * Loops are addressed in `popLoopContext()` so just return                 * the context without modification.                 */                return poppedChoiceContext;
            /* c8 ignore next */            default:                throw new Error("unreachable");        }
        /*         * Merge the true path with the false path to create a single path.         */        const combinedForkContext = poppedChoiceContext.trueForkContext;
        combinedForkContext.addAll(poppedChoiceContext.falseForkContext);        forkContext.replaceHead(combinedForkContext.makeNext(0, -1));
        return poppedChoiceContext;    }
    /**     * Creates a code path segment to represent right-hand operand of a logical     * expression.     * This is called in the preprocessing phase when entering a node.     * @throws {Error} (Unreachable.)     * @returns {void}     */    makeLogicalRight() {        const currentChoiceContext = this.choiceContext;        const forkContext = this.forkContext;
        if (currentChoiceContext.processed) {
            /*             * This context was already assigned segments from a child             * choice context. In this case, we are concerned only about             * the path that does not short-circuit and so ends up on the             * right-hand operand of the logical expression.             */            let prevForkContext;
            switch (currentChoiceContext.kind) {                case "&&": // if true then go to the right-hand side.
                    prevForkContext = currentChoiceContext.trueForkContext;                    break;                case "||": // if false then go to the right-hand side.
                    prevForkContext = currentChoiceContext.falseForkContext;                    break;                case "??": // Both true/false can short-circuit, so needs the third path to go to the right-hand side. That's nullishForkContext.
                    prevForkContext = currentChoiceContext.nullishForkContext;                    break;                default:                    throw new Error("unreachable");            }
            /*             * Create the segment for the right-hand operand of the logical expression             * and adjust the fork context pointer to point there. The right-hand segment             * is added at the end of all segments in `prevForkContext`.             */            forkContext.replaceHead(prevForkContext.makeNext(0, -1));
            /*             * We no longer need this list of segments.             *             * Reset `processed` because we've removed the segments from the child             * choice context. This allows `popChoiceContext()` to continue adding             * segments later.             */            prevForkContext.clear();            currentChoiceContext.processed = false;
        } else {
            /*             * This choice context was not assigned segments from a child             * choice context, which means that it's a terminal logical             * expression.             *             * `head` is the segments for the left-hand operand of the             * logical expression.             *             * Each of the fork contexts below are empty at this point. We choose             * the path(s) that will short-circuit and add the segment for the             * left-hand operand to it. Ultimately, this will be the only segment             * in that path due to the short-circuting, so we are just seeding             * these paths to start.             */            switch (currentChoiceContext.kind) {                case "&&":
                    /*                     * In most contexts, when a && expression evaluates to false,                     * it short circuits, so we need to account for that by setting                     * the `falseForkContext` to the left operand.                     *                     * When a && expression is the left-hand operand for a ??                     * expression, such as `(a && b) ?? c`, a nullish value will                     * also short-circuit in a different way than a false value,                     * so we also set the `nullishForkContext` to the left operand.                     * This path is only used with a ?? expression and is thrown                     * away for any other type of logical expression, so it's safe                     * to always add.                     */                    currentChoiceContext.falseForkContext.add(forkContext.head);                    currentChoiceContext.nullishForkContext.add(forkContext.head);                    break;                case "||": // the true path can short-circuit.
                    currentChoiceContext.trueForkContext.add(forkContext.head);                    break;                case "??": // both can short-circuit.
                    currentChoiceContext.trueForkContext.add(forkContext.head);                    currentChoiceContext.falseForkContext.add(forkContext.head);                    break;                default:                    throw new Error("unreachable");            }
            /*             * Create the segment for the right-hand operand of the logical expression             * and adjust the fork context pointer to point there.             */            forkContext.replaceHead(forkContext.makeNext(-1, -1));        }    }
    /**     * Makes a code path segment of the `if` block.     * @returns {void}     */    makeIfConsequent() {        const context = this.choiceContext;        const forkContext = this.forkContext;
        /*         * If any result were not transferred from child contexts,         * this sets the head segments to both cases.         * The head segments are the path of the test expression.         */        if (!context.processed) {            context.trueForkContext.add(forkContext.head);            context.falseForkContext.add(forkContext.head);            context.nullishForkContext.add(forkContext.head);        }
        context.processed = false;
        // Creates new path from the `true` case.
        forkContext.replaceHead(            context.trueForkContext.makeNext(0, -1)        );    }
    /**     * Makes a code path segment of the `else` block.     * @returns {void}     */    makeIfAlternate() {        const context = this.choiceContext;        const forkContext = this.forkContext;
        /*         * The head segments are the path of the `if` block.         * Updates the `true` path with the end of the `if` block.         */        context.trueForkContext.clear();        context.trueForkContext.add(forkContext.head);        context.processed = true;
        // Creates new path from the `false` case.
        forkContext.replaceHead(            context.falseForkContext.makeNext(0, -1)        );    }
    //--------------------------------------------------------------------------
    // ChainExpression
    //--------------------------------------------------------------------------
    /**     * Pushes a new `ChainExpression` context to the stack. This method is     * called when entering a `ChainExpression` node. A chain context is used to     * count forking in the optional chain then merge them on the exiting from the     * `ChainExpression` node.     * @returns {void}     */    pushChainContext() {        this.chainContext = new ChainContext(this.chainContext);    }
    /**     * Pop a `ChainExpression` context from the stack. This method is called on     * exiting from each `ChainExpression` node. This merges all forks of the     * last optional chaining.     * @returns {void}     */    popChainContext() {        const context = this.chainContext;
        this.chainContext = context.upper;
        // pop all choice contexts of this.
        for (let i = context.choiceContextCount; i > 0; --i) {            this.popChoiceContext();        }    }
    /**     * Create a choice context for optional access.     * This method is called on entering to each `(Call|Member)Expression[optional=true]` node.     * This creates a choice context as similar to `LogicalExpression[operator="??"]` node.     * @returns {void}     */    makeOptionalNode() {        if (this.chainContext) {            this.chainContext.choiceContextCount += 1;            this.pushChoiceContext("??", false);        }    }
    /**     * Create a fork.     * This method is called on entering to the `arguments|property` property of each `(Call|Member)Expression` node.     * @returns {void}     */    makeOptionalRight() {        if (this.chainContext) {            this.makeLogicalRight();        }    }
    //--------------------------------------------------------------------------
    // SwitchStatement
    //--------------------------------------------------------------------------
    /**     * Creates a context object of SwitchStatement and stacks it.     * @param {boolean} hasCase `true` if the switch statement has one or more     *   case parts.     * @param {string|null} label The label text.     * @returns {void}     */    pushSwitchContext(hasCase, label) {        this.switchContext = new SwitchContext(this.switchContext, hasCase);        this.pushBreakContext(true, label);    }
    /**     * Pops the last context of SwitchStatement and finalizes it.     *     * - Disposes all forking stack for `case` and `default`.     * - Creates the next code path segment from `context.brokenForkContext`.     * - If the last `SwitchCase` node is not a `default` part, creates a path     *   to the `default` body.     * @returns {void}     */    popSwitchContext() {        const context = this.switchContext;
        this.switchContext = context.upper;
        const forkContext = this.forkContext;        const brokenForkContext = this.popBreakContext().brokenForkContext;
        if (context.forkCount === 0) {
            /*             * When there is only one `default` chunk and there is one or more             * `break` statements, even if forks are nothing, it needs to merge             * those.             */            if (!brokenForkContext.empty) {                brokenForkContext.add(forkContext.makeNext(-1, -1));                forkContext.replaceHead(brokenForkContext.makeNext(0, -1));            }
            return;        }
        const lastSegments = forkContext.head;
        this.forkBypassPath();        const lastCaseSegments = forkContext.head;
        /*         * `brokenForkContext` is used to make the next segment.         * It must add the last segment into `brokenForkContext`.         */        brokenForkContext.add(lastSegments);
        /*         * Any value that doesn't match a `case` test should flow to the default         * case. That happens normally when the default case is last in the `switch`,         * but if it's not, we need to rewire some of the paths to be correct.         */        if (!context.lastIsDefault) {            if (context.defaultBodySegments) {
                /*                 * There is a non-empty default case, so remove the path from the `default`                 * label to its body for an accurate representation.                 */                disconnectSegments(context.defaultSegments, context.defaultBodySegments);
                /*                 * Connect the path from the last non-default case to the body of the                 * default case.                 */                makeLooped(this, lastCaseSegments, context.defaultBodySegments);
            } else {
                /*                 * There is no default case, so we treat this as if the last case                 * had a `break` in it.                 */                brokenForkContext.add(lastCaseSegments);            }        }
        // Traverse up to the original fork context for the `switch` statement
        for (let i = 0; i < context.forkCount; ++i) {            this.forkContext = this.forkContext.upper;        }
        /*         * Creates a path from all `brokenForkContext` paths.         * This is a path after `switch` statement.         */        this.forkContext.replaceHead(brokenForkContext.makeNext(0, -1));    }
    /**     * Makes a code path segment for a `SwitchCase` node.     * @param {boolean} isCaseBodyEmpty `true` if the body is empty.     * @param {boolean} isDefaultCase `true` if the body is the default case.     * @returns {void}     */    makeSwitchCaseBody(isCaseBodyEmpty, isDefaultCase) {        const context = this.switchContext;
        if (!context.hasCase) {            return;        }
        /*         * Merge forks.         * The parent fork context has two segments.         * Those are from the current `case` and the body of the previous case.         */        const parentForkContext = this.forkContext;        const forkContext = this.pushForkContext();
        forkContext.add(parentForkContext.makeNext(0, -1));
        /*         * Add information about the default case.         *         * The purpose of this is to identify the starting segments for the         * default case to make sure there is a path there.         */        if (isDefaultCase) {
            /*             * This is the default case in the `switch`.             *             * We first save the current pointer as `defaultSegments` to point             * to the `default` keyword.             */            context.defaultSegments = parentForkContext.head;
            /*             * If the body of the case is empty then we just set             * `foundEmptyDefault` to true; otherwise, we save a reference             * to the current pointer as `defaultBodySegments`.             */            if (isCaseBodyEmpty) {                context.foundEmptyDefault = true;            } else {                context.defaultBodySegments = forkContext.head;            }
        } else {
            /*             * This is not the default case in the `switch`.             *             * If it's not empty and there is already an empty default case found,             * that means the default case actually comes before this case,             * and that it will fall through to this case. So, we can now             * ignore the previous default case (reset `foundEmptyDefault` to false)             * and set `defaultBodySegments` to the current segments because this is             * effectively the new default case.             */            if (!isCaseBodyEmpty && context.foundEmptyDefault) {                context.foundEmptyDefault = false;                context.defaultBodySegments = forkContext.head;            }        }
        // keep track if the default case ends up last
        context.lastIsDefault = isDefaultCase;        context.forkCount += 1;    }
    //--------------------------------------------------------------------------
    // TryStatement
    //--------------------------------------------------------------------------
    /**     * Creates a context object of TryStatement and stacks it.     * @param {boolean} hasFinalizer `true` if the try statement has a     *   `finally` block.     * @returns {void}     */    pushTryContext(hasFinalizer) {        this.tryContext = new TryContext(this.tryContext, hasFinalizer, this.forkContext);    }
    /**     * Pops the last context of TryStatement and finalizes it.     * @returns {void}     */    popTryContext() {        const context = this.tryContext;
        this.tryContext = context.upper;
        /*         * If we're inside the `catch` block, that means there is no `finally`,         * so we can process the `try` and `catch` blocks the simple way and         * merge their two paths.         */        if (context.position === "catch") {            this.popForkContext();            return;        }
        /*         * The following process is executed only when there is a `finally`         * block.         */
        const originalReturnedForkContext = context.returnedForkContext;        const originalThrownForkContext = context.thrownForkContext;
        // no `return` or `throw` in `try` or `catch` so there's nothing left to do
        if (originalReturnedForkContext.empty && originalThrownForkContext.empty) {            return;        }
        /*         * The following process is executed only when there is a `finally`         * block and there was a `return` or `throw` in the `try` or `catch`         * blocks.         */
        // Separate head to normal paths and leaving paths.
        const headSegments = this.forkContext.head;
        this.forkContext = this.forkContext.upper;        const normalSegments = headSegments.slice(0, headSegments.length / 2 | 0);        const leavingSegments = headSegments.slice(headSegments.length / 2 | 0);
        // Forwards the leaving path to upper contexts.
        if (!originalReturnedForkContext.empty) {            getReturnContext(this).returnedForkContext.add(leavingSegments);        }        if (!originalThrownForkContext.empty) {            getThrowContext(this).thrownForkContext.add(leavingSegments);        }
        // Sets the normal path as the next.
        this.forkContext.replaceHead(normalSegments);
        /*         * If both paths of the `try` block and the `catch` block are         * unreachable, the next path becomes unreachable as well.         */        if (!context.lastOfTryIsReachable && !context.lastOfCatchIsReachable) {            this.forkContext.makeUnreachable();        }    }
    /**     * Makes a code path segment for a `catch` block.     * @returns {void}     */    makeCatchBlock() {        const context = this.tryContext;        const forkContext = this.forkContext;        const originalThrownForkContext = context.thrownForkContext;
        /*         * We are now in a catch block so we need to update the context         * with that information. This includes creating a new fork         * context in case we encounter any `throw` statements here.         */        context.position = "catch";        context.thrownForkContext = ForkContext.newEmpty(forkContext);        context.lastOfTryIsReachable = forkContext.reachable;
        // Merge the thrown paths from the `try` and `catch` blocks
        originalThrownForkContext.add(forkContext.head);        const thrownSegments = originalThrownForkContext.makeNext(0, -1);
        // Fork to a bypass and the merged thrown path.
        this.pushForkContext();        this.forkBypassPath();        this.forkContext.add(thrownSegments);    }
    /**     * Makes a code path segment for a `finally` block.     *     * In the `finally` block, parallel paths are created. The parallel paths     * are used as leaving-paths. The leaving-paths are paths from `return`     * statements and `throw` statements in a `try` block or a `catch` block.     * @returns {void}     */    makeFinallyBlock() {        const context = this.tryContext;        let forkContext = this.forkContext;        const originalReturnedForkContext = context.returnedForkContext;        const originalThrownForContext = context.thrownForkContext;        const headOfLeavingSegments = forkContext.head;
        // Update state.
        if (context.position === "catch") {
            // Merges two paths from the `try` block and `catch` block.
            this.popForkContext();            forkContext = this.forkContext;
            context.lastOfCatchIsReachable = forkContext.reachable;        } else {            context.lastOfTryIsReachable = forkContext.reachable;        }
        context.position = "finally";
        /*         * If there was no `return` or `throw` in either the `try` or `catch`         * blocks, then there's no further code paths to create for `finally`.         */        if (originalReturnedForkContext.empty && originalThrownForContext.empty) {
            // This path does not leave.
            return;        }
        /*         * Create a parallel segment from merging returned and thrown.         * This segment will leave at the end of this `finally` block.         */        const segments = forkContext.makeNext(-1, -1);
        for (let i = 0; i < forkContext.count; ++i) {            const prevSegsOfLeavingSegment = [headOfLeavingSegments[i]];
            for (let j = 0; j < originalReturnedForkContext.segmentsList.length; ++j) {                prevSegsOfLeavingSegment.push(originalReturnedForkContext.segmentsList[j][i]);            }            for (let j = 0; j < originalThrownForContext.segmentsList.length; ++j) {                prevSegsOfLeavingSegment.push(originalThrownForContext.segmentsList[j][i]);            }
            segments.push(                CodePathSegment.newNext(                    this.idGenerator.next(),                    prevSegsOfLeavingSegment                )            );        }
        this.pushForkContext(true);        this.forkContext.add(segments);    }
    /**     * Makes a code path segment from the first throwable node to the `catch`     * block or the `finally` block.     * @returns {void}     */    makeFirstThrowablePathInTryBlock() {        const forkContext = this.forkContext;
        if (!forkContext.reachable) {            return;        }
        const context = getThrowContext(this);
        if (context === this ||            context.position !== "try" ||            !context.thrownForkContext.empty        ) {            return;        }
        context.thrownForkContext.add(forkContext.head);        forkContext.replaceHead(forkContext.makeNext(-1, -1));    }
    //--------------------------------------------------------------------------
    // Loop Statements
    //--------------------------------------------------------------------------
    /**     * Creates a context object of a loop statement and stacks it.     * @param {string} type The type of the node which was triggered. One of     *   `WhileStatement`, `DoWhileStatement`, `ForStatement`, `ForInStatement`,     *   and `ForStatement`.     * @param {string|null} label A label of the node which was triggered.     * @throws {Error} (Unreachable - unknown type.)     * @returns {void}     */    pushLoopContext(type, label) {        const forkContext = this.forkContext;
        // All loops need a path to account for `break` statements
        const breakContext = this.pushBreakContext(true, label);
        switch (type) {            case "WhileStatement":                this.pushChoiceContext("loop", false);                this.loopContext = new WhileLoopContext(this.loopContext, label, breakContext);                break;
            case "DoWhileStatement":                this.pushChoiceContext("loop", false);                this.loopContext = new DoWhileLoopContext(this.loopContext, label, breakContext, forkContext);                break;
            case "ForStatement":                this.pushChoiceContext("loop", false);                this.loopContext = new ForLoopContext(this.loopContext, label, breakContext);                break;
            case "ForInStatement":                this.loopContext = new ForInLoopContext(this.loopContext, label, breakContext);                break;
            case "ForOfStatement":                this.loopContext = new ForOfLoopContext(this.loopContext, label, breakContext);                break;
            /* c8 ignore next */            default:                throw new Error(`unknown type: "${type}"`);        }    }
    /**     * Pops the last context of a loop statement and finalizes it.     * @throws {Error} (Unreachable - unknown type.)     * @returns {void}     */    popLoopContext() {        const context = this.loopContext;
        this.loopContext = context.upper;
        const forkContext = this.forkContext;        const brokenForkContext = this.popBreakContext().brokenForkContext;
        // Creates a looped path.
        switch (context.type) {            case "WhileStatement":            case "ForStatement":                this.popChoiceContext();
                /*                 * Creates the path from the end of the loop body up to the                 * location where `continue` would jump to.                 */                makeLooped(                    this,                    forkContext.head,                    context.continueDestSegments                );                break;
            case "DoWhileStatement": {                const choiceContext = this.popChoiceContext();
                if (!choiceContext.processed) {                    choiceContext.trueForkContext.add(forkContext.head);                    choiceContext.falseForkContext.add(forkContext.head);                }
                /*                 * If this isn't a hardcoded `true` condition, then `break`                 * should continue down the path as if the condition evaluated                 * to false.                 */                if (context.test !== true) {                    brokenForkContext.addAll(choiceContext.falseForkContext);                }
                /*                 * When the condition is true, the loop continues back to the top,                 * so create a path from each possible true condition back to the                 * top of the loop.                 */                const segmentsList = choiceContext.trueForkContext.segmentsList;
                for (let i = 0; i < segmentsList.length; ++i) {                    makeLooped(                        this,                        segmentsList[i],                        context.entrySegments                    );                }                break;            }
            case "ForInStatement":            case "ForOfStatement":                brokenForkContext.add(forkContext.head);
                /*                 * Creates the path from the end of the loop body up to the                 * left expression (left of `in` or `of`) of the loop.                 */                makeLooped(                    this,                    forkContext.head,                    context.leftSegments                );                break;
            /* c8 ignore next */            default:                throw new Error("unreachable");        }
        /*         * If there wasn't a `break` statement in the loop, then we're at         * the end of the loop's path, so we make an unreachable segment         * to mark that.         *         * If there was a `break` statement, then we continue on into the         * `brokenForkContext`.         */        if (brokenForkContext.empty) {            forkContext.replaceHead(forkContext.makeUnreachable(-1, -1));        } else {            forkContext.replaceHead(brokenForkContext.makeNext(0, -1));        }    }
    /**     * Makes a code path segment for the test part of a WhileStatement.     * @param {boolean|undefined} test The test value (only when constant).     * @returns {void}     */    makeWhileTest(test) {        const context = this.loopContext;        const forkContext = this.forkContext;        const testSegments = forkContext.makeNext(0, -1);
        // Update state.
        context.test = test;        context.continueDestSegments = testSegments;        forkContext.replaceHead(testSegments);    }
    /**     * Makes a code path segment for the body part of a WhileStatement.     * @returns {void}     */    makeWhileBody() {        const context = this.loopContext;        const choiceContext = this.choiceContext;        const forkContext = this.forkContext;
        if (!choiceContext.processed) {            choiceContext.trueForkContext.add(forkContext.head);            choiceContext.falseForkContext.add(forkContext.head);        }
        /*         * If this isn't a hardcoded `true` condition, then `break`         * should continue down the path as if the condition evaluated         * to false.         */        if (context.test !== true) {            context.brokenForkContext.addAll(choiceContext.falseForkContext);        }        forkContext.replaceHead(choiceContext.trueForkContext.makeNext(0, -1));    }
    /**     * Makes a code path segment for the body part of a DoWhileStatement.     * @returns {void}     */    makeDoWhileBody() {        const context = this.loopContext;        const forkContext = this.forkContext;        const bodySegments = forkContext.makeNext(-1, -1);
        // Update state.
        context.entrySegments = bodySegments;        forkContext.replaceHead(bodySegments);    }
    /**     * Makes a code path segment for the test part of a DoWhileStatement.     * @param {boolean|undefined} test The test value (only when constant).     * @returns {void}     */    makeDoWhileTest(test) {        const context = this.loopContext;        const forkContext = this.forkContext;
        context.test = test;
        /*         * If there is a `continue` statement in the loop then `continueForkContext`         * won't be empty. We wire up the path from `continue` to the loop         * test condition and then continue the traversal in the root fork context.         */        if (!context.continueForkContext.empty) {            context.continueForkContext.add(forkContext.head);            const testSegments = context.continueForkContext.makeNext(0, -1);
            forkContext.replaceHead(testSegments);        }    }
    /**     * Makes a code path segment for the test part of a ForStatement.     * @param {boolean|undefined} test The test value (only when constant).     * @returns {void}     */    makeForTest(test) {        const context = this.loopContext;        const forkContext = this.forkContext;        const endOfInitSegments = forkContext.head;        const testSegments = forkContext.makeNext(-1, -1);
        /*         * Update the state.         *         * The `continueDestSegments` are set to `testSegments` because we         * don't yet know if there is an update expression in this loop. So,         * from what we already know at this point, a `continue` statement         * will jump back to the test expression.         */        context.test = test;        context.endOfInitSegments = endOfInitSegments;        context.continueDestSegments = context.testSegments = testSegments;        forkContext.replaceHead(testSegments);    }
    /**     * Makes a code path segment for the update part of a ForStatement.     * @returns {void}     */    makeForUpdate() {        const context = this.loopContext;        const choiceContext = this.choiceContext;        const forkContext = this.forkContext;
        // Make the next paths of the test.
        if (context.testSegments) {            finalizeTestSegmentsOfFor(                context,                choiceContext,                forkContext.head            );        } else {            context.endOfInitSegments = forkContext.head;        }
        /*         * Update the state.         *         * The `continueDestSegments` are now set to `updateSegments` because we         * know there is an update expression in this loop. So, a `continue` statement         * in the loop will jump to the update expression first, and then to any         * test expression the loop might have.         */        const updateSegments = forkContext.makeDisconnected(-1, -1);
        context.continueDestSegments = context.updateSegments = updateSegments;        forkContext.replaceHead(updateSegments);    }
    /**     * Makes a code path segment for the body part of a ForStatement.     * @returns {void}     */    makeForBody() {        const context = this.loopContext;        const choiceContext = this.choiceContext;        const forkContext = this.forkContext;
        /*         * Determine what to do based on which part of the `for` loop are present.         * 1. If there is an update expression, then `updateSegments` is not null and         *    we need to assign `endOfUpdateSegments`, and if there is a test         *    expression, we then need to create the looped path to get back to         *    the test condition.         * 2. If there is no update expression but there is a test expression,         *    then we only need to update the test segment information.         * 3. If there is no update expression and no test expression, then we         *    just save `endOfInitSegments`.         */        if (context.updateSegments) {            context.endOfUpdateSegments = forkContext.head;
            /*             * In a `for` loop that has both an update expression and a test             * condition, execution flows from the test expression into the             * loop body, to the update expression, and then back to the test             * expression to determine if the loop should continue.             *             * To account for that, we need to make a path from the end of the             * update expression to the start of the test expression. This is             * effectively what creates the loop in the code path.             */            if (context.testSegments) {                makeLooped(                    this,                    context.endOfUpdateSegments,                    context.testSegments                );            }        } else if (context.testSegments) {            finalizeTestSegmentsOfFor(                context,                choiceContext,                forkContext.head            );        } else {            context.endOfInitSegments = forkContext.head;        }
        let bodySegments = context.endOfTestSegments;
        /*         * If there is a test condition, then there `endOfTestSegments` is also         * the start of the loop body. If there isn't a test condition then         * `bodySegments` will be null and we need to look elsewhere to find         * the start of the body.         *         * The body starts at the end of the init expression and ends at the end         * of the update expression, so we use those locations to determine the         * body segments.         */        if (!bodySegments) {
            const prevForkContext = ForkContext.newEmpty(forkContext);
            prevForkContext.add(context.endOfInitSegments);            if (context.endOfUpdateSegments) {                prevForkContext.add(context.endOfUpdateSegments);            }
            bodySegments = prevForkContext.makeNext(0, -1);        }
        /*         * If there was no test condition and no update expression, then         * `continueDestSegments` will be null. In that case, a         * `continue` should skip directly to the body of the loop.         * Otherwise, we want to keep the current `continueDestSegments`.         */        context.continueDestSegments = context.continueDestSegments || bodySegments;
        // move pointer to the body
        forkContext.replaceHead(bodySegments);    }
    /**     * Makes a code path segment for the left part of a ForInStatement and a     * ForOfStatement.     * @returns {void}     */    makeForInOfLeft() {        const context = this.loopContext;        const forkContext = this.forkContext;        const leftSegments = forkContext.makeDisconnected(-1, -1);
        // Update state.
        context.prevSegments = forkContext.head;        context.leftSegments = context.continueDestSegments = leftSegments;        forkContext.replaceHead(leftSegments);    }
    /**     * Makes a code path segment for the right part of a ForInStatement and a     * ForOfStatement.     * @returns {void}     */    makeForInOfRight() {        const context = this.loopContext;        const forkContext = this.forkContext;        const temp = ForkContext.newEmpty(forkContext);
        temp.add(context.prevSegments);        const rightSegments = temp.makeNext(-1, -1);
        // Update state.
        context.endOfLeftSegments = forkContext.head;        forkContext.replaceHead(rightSegments);    }
    /**     * Makes a code path segment for the body part of a ForInStatement and a     * ForOfStatement.     * @returns {void}     */    makeForInOfBody() {        const context = this.loopContext;        const forkContext = this.forkContext;        const temp = ForkContext.newEmpty(forkContext);
        temp.add(context.endOfLeftSegments);        const bodySegments = temp.makeNext(-1, -1);
        // Make a path: `right` -> `left`.
        makeLooped(this, forkContext.head, context.leftSegments);
        // Update state.
        context.brokenForkContext.add(forkContext.head);        forkContext.replaceHead(bodySegments);    }
    //--------------------------------------------------------------------------
    // Control Statements
    //--------------------------------------------------------------------------
    /**     * Creates new context in which a `break` statement can be used. This occurs inside of a loop,     * labeled statement, or switch statement.     * @param {boolean} breakable Indicates if we are inside a statement where     *      `break` without a label will exit the statement.     * @param {string|null} label The label associated with the statement.     * @returns {BreakContext} The new context.     */    pushBreakContext(breakable, label) {        this.breakContext = new BreakContext(this.breakContext, breakable, label, this.forkContext);        return this.breakContext;    }
    /**     * Removes the top item of the break context stack.     * @returns {Object} The removed context.     */    popBreakContext() {        const context = this.breakContext;        const forkContext = this.forkContext;
        this.breakContext = context.upper;
        // Process this context here for other than switches and loops.
        if (!context.breakable) {            const brokenForkContext = context.brokenForkContext;
            if (!brokenForkContext.empty) {                brokenForkContext.add(forkContext.head);                forkContext.replaceHead(brokenForkContext.makeNext(0, -1));            }        }
        return context;    }
    /**     * Makes a path for a `break` statement.     *     * It registers the head segment to a context of `break`.     * It makes new unreachable segment, then it set the head with the segment.     * @param {string|null} label A label of the break statement.     * @returns {void}     */    makeBreak(label) {        const forkContext = this.forkContext;
        if (!forkContext.reachable) {            return;        }
        const context = getBreakContext(this, label);
        if (context) {            context.brokenForkContext.add(forkContext.head);        }
        /* c8 ignore next */        forkContext.replaceHead(forkContext.makeUnreachable(-1, -1));    }
    /**     * Makes a path for a `continue` statement.     *     * It makes a looping path.     * It makes new unreachable segment, then it set the head with the segment.     * @param {string|null} label A label of the continue statement.     * @returns {void}     */    makeContinue(label) {        const forkContext = this.forkContext;
        if (!forkContext.reachable) {            return;        }
        const context = getContinueContext(this, label);
        if (context) {            if (context.continueDestSegments) {                makeLooped(this, forkContext.head, context.continueDestSegments);
                // If the context is a for-in/of loop, this affects a break also.
                if (context.type === "ForInStatement" ||                    context.type === "ForOfStatement"                ) {                    context.brokenForkContext.add(forkContext.head);                }            } else {                context.continueForkContext.add(forkContext.head);            }        }        forkContext.replaceHead(forkContext.makeUnreachable(-1, -1));    }
    /**     * Makes a path for a `return` statement.     *     * It registers the head segment to a context of `return`.     * It makes new unreachable segment, then it set the head with the segment.     * @returns {void}     */    makeReturn() {        const forkContext = this.forkContext;
        if (forkContext.reachable) {            getReturnContext(this).returnedForkContext.add(forkContext.head);            forkContext.replaceHead(forkContext.makeUnreachable(-1, -1));        }    }
    /**     * Makes a path for a `throw` statement.     *     * It registers the head segment to a context of `throw`.     * It makes new unreachable segment, then it set the head with the segment.     * @returns {void}     */    makeThrow() {        const forkContext = this.forkContext;
        if (forkContext.reachable) {            getThrowContext(this).thrownForkContext.add(forkContext.head);            forkContext.replaceHead(forkContext.makeUnreachable(-1, -1));        }    }
    /**     * Makes the final path.     * @returns {void}     */    makeFinal() {        const segments = this.currentSegments;
        if (segments.length > 0 && segments[0].reachable) {            this.returnedForkContext.add(segments);        }    }}
module.exports = CodePathState;
 |